Reinventing Residential Retrofit

Innovation in Energy Efficiency Retrofits to Meet Climate, Energy, Environmental, and Health Goals

Bruce D. Ray

Annual Southwest Utility Energy Efficiency Workshop

November 16, 2016
Berkshire Hathaway Company (WHQ in Denver)

Three business divisions -
- Insulation Systems (thermal, acoustic)
 - Building
 - Industrial
 - OEM, aerospace
- Commercial Roofing Systems (membranes, insulations)
- Engineered Products (nonwovens-mats, reinforcements, filtration)

Basic stats
- 7,100 employees
- 44 mfg’ing locations (NA, EU)
- $2.6B annual sales
“Buffett-isms” Affecting JM’s Approach

• Crave efficiency and detest bureaucracy
• Emphasize avoidance of bloat
• Delight your customers
• Build long-term competitive advantage
• Relentlessly attack costs
Johns Manville, a Berkshire Hathaway company, manufactures residential and commercial insulation, commercial roofing, mechanical insulation and materials for other manufacturers' products and applications.
Existing Utility Programs for Contractors

- Multiple but limited entry points
 - Increased costs
 - Reduced revenues
 - Inability to exploit synergies
A Better Way?

• Need completely new entry point
 – Combines all programs
 – Recognizes the convergence: EE \rightarrow DR \rightarrow Storage
 – Expands/stacks revenue streams + locational value
 – Reduces cost (especially fixed costs)

• Long term: change IOU business model

• Short term:
 – Look outside utilities
 – New entry point: NEBs?
Energy Efficiency to Achieve Emissions Reductions

Basic residential energy efficiency retrofit:
- Air sealing: attic, HVAC ducts
- Additional insulation: attic, ducts
Energy Efficiency to Achieve Emissions Reductions

Use the power of large numbers

Quantify and Aggregate Energy Savings

Savings models

Quantify emissions Reductions

Attribution method

Modeling; EnergyPro; Other methods

E-grid
Avert

\[\int_a^b f(t) \, dt = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \Delta t \]
Using Energy Efficiency to Reduce Emissions

- Opportunity is greatest where pollution is worst
- Focus on CAA non-attainment areas
 - Must show reasonable further progress
 - Typically more open to innovative ideas/approaches
- LA Basin non-attainment
 - Ozone - severe/extreme
 - PM2.5 – serious
Coachella Valley Project: Origin

- Coachella Valley Sentinel Power Plant
 - South Coast AQMD RFP issued for emissions mitigation projects
 - JM worked with Add Insulation to propose “utility-scale” energy efficiency retrofit project
 - Initial award in Nov. 2013: $2.35 million
 - Later increased to approx. $4.00 million

- Basic efficiency retrofit
 - Attic air sealing
 - Increased attic insulation to R-38

Not a low-income program
Coachella Valley Project: Approach

- Overall: minimize costs and project time (relentlessly)
 - Minimize cost
 - No diagnostics
 - No custom jobs; basic EE retrofit
 - Installation clusters
 - EM&O < 1.5%
 - Minimize project time
 - Neighborhood/block approach
 - New installation techniques → 3 hour completion
 - New products
 - Maximize
 - Energy savings, emissions reductions
 - Customer engagement: free installation
Coachella Valley Project: Status

- Environmental Justice area completed: 506 homes
- Total homes
 - Completed: 2,000
 - Total by 2016 EOY: 2,100
- Average cost per home
 - EJ: $2,200; All: $1,980
 - Compare to EUC: >$8,000
- Achieving:
 - High quality installation
 - Detailed documentation
 - High customer satisfaction and engagement

Dwelling archetype
Coachella Valley Project: Results

• Annual energy savings
 – 1,560 kWh/home; 3,275,000 kWh total*
 – 35 therms/home; 73,500 therms total*

• Annual energy bill savings
 – Per home: $310
 – Total: $650,000

• Total annual emissions reductions
 – GHG: 1,750 tons
 – PM2.5: 95 lbs

* Energy savings based on EnergyPro v5.1 software
Coachella Valley Project: Results

- Key achievements
 - Clean-green virtual power plant
 - Emissions reductions and health/comfort benefits
 - Community engagement
 - Climate justice, climate resilience
 - Project approach formally adopted by AQMD as pollution control measure to demonstrate RFP to meeting NAAQS

- Control Measure No. ECC-02 ("CO-BENEFITS FROM EXISTING RESIDENTIAL AND COMMERCIAL BUILDING ENERGY EFFICIENCY MEASURES [NOX, VOC]")
Project Expansion: Efficiency + High-Tech

• Efficiency measures: seal/insulate attic and ducts
• Estimated combined energy savings
 – Suite of EE measures: 20% → 18% (TDV)
 – Nest learning thermostat: 5+% (TDV)
 – Combined with synergies: ≈ 25+%
• Cost: ≈ $3,350
• “Utility-scale” Residential Retrofit Project criteria:
 – large # of projects; reas. cost; short completion time
 – Single installer crew – in home < 3 hours
 – Close to Goal: 3-3-3 - $3000 – 3 hours – 30% savings
Proposed Expansion Projects

- Energy Efficiency Measures:
 - Air seal attic floor
 - Attic insulation to R-38 - 49
 - Air seal AC ducts
 - Insulate ACducts
 - Nest thermostat
 - 3 LED lights

Approx. $3,400 per home – 1,200 homes → $4 million total
Project Expansion: DR + Energy Storage

- Commercially available technology that is capable of absorbing energy, storing it for a period of time, and thereafter dispatching the energy.

- Proprietary technology for energy storage
 - Residential
 - Behind the meter
 - Non-battery

Bytes not batteries
Backup Slides

* Energy savings based on EnergyPro v5.1 software
Other Irons in the Fire

- Zero net energy residential retrofits
- Title 24 compliant residential cool roof retrofits
- High performance attic retrofit
Health Benefits of Energy Efficiency

Levy et al. 2016

- 90% of homes under-insulated
- Energy savings from all homes meeting 2012 IECC
- Emissions reductions
- Public health benefits
 - mortality
 - morbidity
Attic Insulation

- **R-15**: 4”-5” deep, Poorly Insulated, Older Home
- **R-21**: 6”-7” deep, Completely Filled Joist, Inadequately Insulated
- **R-38**: 13”-14” deep, Recommended For Most Southern Climates
- **R-49**: 16”-18” deep, Recommended For Northern Climates

Recommended Dept. of Energy attic insulation levels for commonly used fiberglass, mineral wool, and cellulose insulation assuming about R-3 per inch.

“Standard joists are sold as 2’ x 8” but usually measure closer to 1.5” x 7.5.”

Source: ENERGY STAR®
Deteriorated Attic Insulation

Desert Hot Springs
Relationship between percentage of incentive and participation rate: energy efficiency measures

- **Recalcitrants**
- **Negative inflection point**
- **Positive inflection point**
- **False failure area**
- **Origin issue: some will do w/o incentive**

Percentage of incentive/subsidy vs. Participation rate
Priority Actions

• Find shape of the curve
• Investigate and adopt policies that
 – Move along the curve to higher participation rates
 – Move the curve itself to the left
 • Increase participation rates
 • But at lower cost
 – Change shape of curve
 • Make curve steeper between positive and negative inflection points
Relationship between percentage of incentive and participation rate: energy efficiency measures

Adopt policies to shift curve to left